
It Just (Net)works
The Truth About iOS'

Multipeer Connectivity Framework

Alban Diquet!
@nabla_c0d3

HITB 2014
Malaysia

About me

• iOS Security Researcher at Data Theorem

• Before: Principal Security Consultant at iSEC
Partners

• Led iSEC Partners’ audit of Cryptocat iOS

• Tools: SSLyze, Introspy, iOS SSL Kill Switch

2

Agenda

• What is Multipeer Connectivity?

• Quick intro to the MC API

• Reversing the MC protocol(s)

• Security analysis of MC

3

What is
Multipeer Connectivity?

4

5

Multipeer Connectivity

Multipeer Connectivity

• Audibly: Stream songs to other devices

• iTranslate Voice: “AirTranslate”

• FireChat: Anonymous “off-the-grid“ chat

• Tons of possible use cases: collaborative
editing, file sharing, multiplayer gaming, etc.

6

Demo

7

Motivation

8

Quick intro to the
MC API

9

MC API
• 1. Discovery phase: Establish a session!

• Per-App service name (“og-firechat” for FireChat)

• The App can browse for nearby peers advertising the
MC service

• And then send an invitation to discovered peers

• The App can advertise its own local MC service to
nearby peers

• And then accept or reject invitations from other peers

10

• 2. Session phase: Exchange data!

• A session can be established after one or multiple peers accepted a
pairing invitation:  
 
 
 

• The App can then exchange data with these peers:  
 
 
 

MC API

11

• 2. Session phase: Exchange data!

• A session can be established after one or multiple peers accepted a
pairing invitation:  
 
 
 

• The App can then exchange data with these peers:  
 
 
 

MC API

12

Demo

13

• The App can specify an encryptionPreference  

• Three encryption levels:  
 

 

• No further explanation in the documentation

MC API - Encryption

14

• The App can specify a securityIdentity  

• A "security identity" is an X509 certificate and the
corresponding private key

• The peer’s identify when pairing with other peers

• A callback has to be implemented for validating
other peers’ certificates/identities during pairing: 

MC API - Authentication

15

MC API - Peer Management
• How MC sessions get established

• “Automated"/default peer management

• Invite prompt before pairing: 

• "Manual" peer management

• Developers can customize how pairing is done

• Fully transparent pairing (ie. no user prompts) can be
implemented

16

MC API - Security
• Peer Management!

• Automated or Manual

• Encryption!

• None, Optional or Required

• Authentication!

• Enabled or Disabled
17

Reversing the
MC protocol(s)

18

Test Setup
• Macbook in WiFi Access Point mode +

Wireshark

• Sample MC App with default MC settings

• Two devices:

• iPad Air with Bluetooth disabled

• iOS Simulator

19

20

21

22

A B

23

??? over TCP!
!

STUN / ICE!

Bonjour!
!

A B

??? over UDP!
!

24

??? over TCP!
!

STUN / ICE!

Bonjour!
!

A B

??? over UDP!
!

25

??? over TCP!
!

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B

??? over UDP!
!

26

??? over TCP!
!

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B

??? over UDP!
!

27

28

Mystery Protocol #1
• Peer connects to the other peer over TCP

• Each peer sends their “PeerID” first

• (random) “idString” + device name

• For example: ”ory2g6r8fkq+iPhone Simulator”

• Three plists are then exchanged

29

30

A B

31

A B

32

A B

33

A

34

A B

35

A B

36

A B

37

A B

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

38

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

39

• The peer’s security settings as bit fields:

• Encryption level (optional = X00, none = X10, required = X01)

• Whether authentication is enabled (yes = 1XX, no = 0XX)

• Only the settings; no X509 certificate/identity yet

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

40

• Then a list of local "candidate" IP addresses and port numbers

!

!

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

41

• Then a list of local "candidate" IP addresses and port numbers

• 192.168.1.8

!

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

42

• Then a list of local "candidate" IP addresses and port numbers

• 192.168.1.8

• 169.254.234.105

• Etc…

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

43

• Then some kind of IDs (according to debug logs)?

!

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

44

• Then some kind of IDs (according to debug logs)?

• 6F7D4FE3, etc…

45

GCK1 over TCP!
Exchange peer names, security options

and "candidate" UDP sockets

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B

??? over UDP!
!

46

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

??? over UDP!
!

Interactive Connectivy
Establishement

47

com.apple.MultipeerConnectivity: GK START ICE check with peer 317456B5 
com.apple.ICE: Updated ICEList(829707957) to role (1) 
 
com.apple.ICE: Local candidate(1/3): ID[07FEE53F00000000] [192.168.2.2:16402] 
com.apple.ICE: Local candidate(2/3): ID[4348FA0000000000] [[fe80::29:203:1454:aa5a%en0]:16402] 
com.apple.ICE: Local candidate(3/3): ID[3904EA8D00000000] [[fe80::ecf1:14ff:fe49:d55a%awdl0]:16402] 
 
com.apple.ICE: Remote candidate(1/3): ID[6F7D4FE300000000] [192.168.1.8:16401] 
com.apple.ICE: Remote candidate(2/3): ID[6474621200000000] [169.254.234.105:16401] 
com.apple.ICE: Remote candidate(3/3): ID[45A87A1400000000] [192.168.2.1:16401] 
 
com.apple.ICE: ICEStartConnectivityCheck(id[local:829707957 remote:1350514450] count[local:3 remote:3] 
com.apple.ICE: [CHECKPOINT] connectivity-check-thread-started 
com.apple.ICE: event 192.168.2.2:16402->192.168.1.8:16401 expires 210041.818916 
 
 
com.apple.ICE: ** BINDING_REQUEST [00018674C3972B2DC739DF77] from [192.168.1.8:16401] USERNAME
[07FEE53F.00000000.1-6F7D4FE3.00000000.1] 
com.apple.ICE: Remote ICE Version: 109 
com.apple.ICE: OLD STATE(TESTING)->NEW STATE(TESTING) 
com.apple.MultipeerConnectivity: send udp packet from 192.168.2.2:16402 to 192.168.1.8:16401 ...

48

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

??? over UDP!
!

49

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

??? over UDP!
!

Mystery Protocol #2

50

Mystery Protocol #2

51

Mystery Protocol #2
• It’s the protocol used when App data is being exchanged

• Not plaintext… but Wireshark doesn’t know what it is

• Clues:

•

•  

52

Mystery Protocol #2
• It’s the protocol used when App data is being exchanged

• Not plaintext… but Wireshark doesn’t know what it is

• Clues:

• Authentication in the MC API relies on X509 certificates

•  

53

Mystery Protocol #2
• It’s the protocol used when App data is being exchanged

• Not plaintext… but Wireshark doesn’t know what it is

• Clues:

• Authentication in the MC API relies on X509 certificates

• When setting a breakpoint on SSLHandshake(), it does get
triggered…

54

Mystery Protocol #2
• It’s the protocol used when App data is being exchanged

• Not plaintext… but Wireshark doesn’t know what it is

• Clues:

• Authentication in the MC API relies on X509 certificates

• When setting a breakpoint on SSLHandshake(), it does get
triggered…

55

56

Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443

57

Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443

58

Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443

Pro Packet Trace Editing

59

Pro Packet Trace Editing

60

• Success!

Mystery Protocol #2

61

• DTLS 1.0 with the byte 0xd0 appended to every DTLS
record 

• _gckSessionRecvMessage() 

• Inside the DTLS stream:

• Simple plaintext protocol

• The other peer’s PeerID + App data/messages

62

GCK2 over UDP!
Perform DTLS handshake, check the other

peer’s identity, exchange data

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

63

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

GCK1 over TCP!
Exchange peer names, security options

and network information

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

Discovery Phase

GCK2 over UDP!
Perform DTLS handshake, check the other

peer’s identity, exchange data
Session Phase

A B

Security Analysis of
Multipeer Connectivity

64

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication

65

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication

66

MC Security Analysis
• MCEncryptionRequired With Authentication: 

DTLS with mutual authentication

• Each peer sends their certificate and validate the
other side’s certificate

• RSA & EC-DSA TLS Cipher Suites

• 30 cipher suites supported in total including PFS
cipher suites.!

• In practice, TLS_RSA_WITH_AES_256_CBC_SHA256 is always
negotiated, which doesn’t provide PFS

67

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication No PFS

68

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication No PFS

69

MC Security Analysis
• MCEncryptionRequired Without Authentication:  

DTLS with Anonymous TLS Cipher Suites

• No certificates exchanged

• “Anon" AES TLS cipher suites:

• TLS_DH_anon_WITH_AES_128_CBC_SHA,
TLS_DH_anon_WITH_AES_256_CBC_SHA,
TLS_DH_anon_WITH_AES_128_CBC_SHA256,
TLS_DH_anon_WITH_AES_256_CBC_SHA256

70

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication MiTM

With 
 Authentication No PFS

71

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication MiTM

With 
 Authentication No PFS

72

MC Security Analysis

• MCEncryptionNone Without Authentication:  
No DTLS - Plaintext GCK2 protocol

73

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication No PFS

74

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication No PFS

75

MC Security Analysis
• MCEncryptionNone With Authentication: 

DTLS with mutual authentication

• Each peer send their certificate and validate
the other side’s certificate

• Plaintext / “No Encryption” TLS Cipher Suites!

• TLS_RSA_WITH_NULL_SHA , 
TLS_RSA_WITH_NULL_SHA256

76

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication Plaintext No PFS

77

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication Plaintext No PFS

78

MC Security Analysis
• MCEncryptionOptional Without Authentication!

• ”The session prefers to use encryption, but will
accept unencrypted connections”  
 
 
 
 
 

79

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext No PFS

80

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext No PFS

81

MC Security Analysis
• MCEncryptionOptional With Authentication!

• ”The session prefers to use encryption, but will
accept unencrypted connections”

• Two peers using MCEncryptionOptional with
Authentication should get the same security as
MCEncryptionRequired

• Authentication should prevent a man-in-the-
middle from tampering with the network traffic

82

83

GCK2 over UDP!
Perform DTLS handshake, check the other

peer’s identity, exchange data

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

GCK1 over TCP!
Exchange peer names, security options

and "candidate" UDP sockets

84

MCEncryptionOptional!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

DTLS with RSA / AES cipher suite

ICE / STUN

Bonjour

• Encrypted & authenticated traffic
• Same security as MCEncryptionRequired

85

Bonjour

86

MCEncryptionOptional!
Authentication Enabled

Bonjour

87

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

Bonjour

88

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

Bonjour

89

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

ICE / STUN

Bonjour

90

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

DTLS with NULL cipher suite

ICE / STUN

Bonjour

• Plaintext traffic (authenticated)!
• No post-auth checks on the  

MCEncryption parameters exchanged!
• Same security as MCEncryptionNone

MCEncryptionOptional
Downgrade Attack

91

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext MitM

(Downgrade) No PFS

92

Conclusion

93

Conclusion
• Most security settings work as advertised by the MC

documentation

• Except for MCEncryptionOptional with Authentication

• Some combinations should never be used

• MCEncryptionOptional

• MCEncryptionNone with Authentication

• Only MCEncryptionRequired with Authentication is secure

94

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext MitM

(Downgrade) No PFS

95

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext MitM

(Downgrade) No PFS

96

Conclusion
• Possible improvements to the MC Framework:

• MCEncryptionRequired with Authentication:

• Prioritize Perfect Forward Secrecy TLS Cipher Suites

• MCEncryptionOptional with Authentication:

• Peers should validate security parameters post-
authentication to prevent downgrade attacks

• Better: remove MCEncryptionOptional and make
MCEncryptionRequired the default setting?

97

Thanks!

98

More at  
https://nabla-c0d3.github.io

https://nabla-c0d3.github.io

